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FOREWARD 

This repor t  descr ibes  the work done under Contract NASw-672, 

"Hollow Multipartitioned Ceramic Structures" for  Headquarters,  National 

Aeronautics & Space Administration, Washington, D. C. The work covered 

by this repor t  represents  the first half of the total planned program, there-  

fore ,  any conclusions given he re  a r e  of an interim nature.  The contract  

was  adminis tered by M r .  M. Rosch;, Chief of Space Vehicles Structures  

P rograms .  M r .  Norman J. Mayer,  Chief, Advanced Structures  and Mate r -  

ials Applications, is  P ro jec t  Manager. 

Under the supervision of Mr .  William J.  Eakins,  Chief, Glass  F i b e r s  

& Composites Section, Mr .  Richard A. Humphrey was P ro jec t  Engineer.  

Able ass i s tance  was provided on al l  phases  of the program by M r .  Dan Hess ,  

Glass  F i b e r s  Technician. M r .  Dixon Wetherbe drew the hexagonal tubes 

and M r .  Lewis  Heath worked on the precision winding. 
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ABSTRACT 

Resul ts  a r e  presented of a fifteen month program of forming 

The feas-  glass  filaments whose shape i s  other than a solid round. 

ibility of drawing prec ise  geometric shapes of f ibers  i s  demonstrated. 

With the objective of high stiffness-to-weight ratio,  mos t  of the f ibers  

were  drawn into hollow c r o s s  sections of various shapes for subsequent 

fi lament winding. Of particular interest  a r e  hollow hexagonal, tri- 

angular and rectangular filaments. Surprisingly complex hollow f ibers  
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I. INTRODUCTION 

Fi lament  strengths of over 500, 000 psi a r e  commonly realized in cer ta in  

g lass  formulations as c i rcu lar  filaments. 

these fi laments to over 90. 7% by volume. 

rectangular fo rms  have the advantage of 10070 theoret ical  packing. 

with contoured c r o s s  sections having angular charac te r i s t ics  like a hexagon a s  

well as wide and strong fi laments like a wide rectangle may be chosen to dove- 

tail o r  mate  with adjacent filaments and yield a packing of near ly  100% by 

volume. 

HOwever, i t  i s  impossible to pack 

On the other hand, hexagonal o r  

Fi laments  

I t  i s  possible to filament wind s t ructures  of high stiffness-to-weight 

and good strength using hollow f ibers .  

optimized by using very hollow filaments with outside shapes that can be made 

to mate  with one another.  

to fill the thin joints between adjacent fibers.  

a r e  packed in a somewhat random configuration approaching but not reaching 

90. 770 by volume, 

appears  to be composed of a se r i e s  of films and t r icorn- l ike shapes. 

between fi laments,  by-passing the t r icorns ,  will  tend to go through the films 

at high concentration. 

g lass  fi lament see Appendix I. 

with mating surfaces ,  the low matrix-to-fi lament-volume ratio and the thin 

The t r ansve r se  modulus could be 

Only a small  amount of res in  would then be required 

If c i rcu lar  paral le l  f i laments 

the matrix (when viewed normal  to the axis of the filaments) 

S t r e s s  

F o r  a discussion of the interaction between res ins  and 

In composite s t ruc tures  composed of fi laments 
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adhesive l aye r s  should provide much m o r e  uniform s t r e s s  t ransfer  throughout 

the structure.  

The purpose of this program,  therefore ,  is  to study fi laments composed 

of g lass  films and determine their  value. 

by this  report  i s  largely exploratory.  

filaments in regular and sharply defined shapes having almost  every conceivable 

variation in construction. 

A s  will develop, the work covered 

To date, a way has  been found to make 

It i s  a fur ther  purpose of this program to demonstrate to designers  that 

they may conceive of a composite ma te r i a l  in which the filament has  a p r e -  

engineered c r o s s  section and that these fi laments may be drawn and wound. 

During the pas t  few y e a r s ,  DeBell & Richardson has  undertaken the 

drawing of g lass  fi laments whose c r o s s  section was  not a simple round solid. 

Pre l iminary  experiments on rectangular fi laments were  f i r s t  made over  a 

laboratory burner  and l a t e r  a lmost  square f i b e r s  were  fol'med in a ver t ica l  

electrically-heated furnace with a localized hot zone. The la t te r  work was  

undertaken a s  a supplement to a Navy Bureau of Weapons p rogram (1)  and i t  

proved the feasibility of forming solid rectangular  f ibers .  Subsequently, 

under a small Office of Naval Resea rch  contract  ( 2 ) ,  solid hexagonal E -g la s s  

fi laments were  made here .  

shape of a preform other than round, i t  w a s  necessa ry  to refine the p r o c e s s  

In o r d e r  to maintain c r i s p  reproduction of the 
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substantially. 

technique used on this contract  can be found in Appendix II. 

Some his tor ical  notes which descr ibe the ear ly  beginnings of the 

Cen e r a1 Obi e ctive s 
~ ~~~ 

Conduct studies of hollow ceramic filaments f o r  the purpose of providing 

m o r e  efficient s t ruc tura l  u s e  of these mater ia ls .  

values which can be obtained with a multiple number of properly oriented thin 

g lass  films by providing hollow filaments of geometric shapes and multiples.  

Utilize the higher strength 

Specific Objectives 

A. Investigate the following filament de signs: 

1 ,  Elementary hollow c r o s s  sections: square,  tr iangular,  hexagonal, 

etc.  f i laments 

2. Complex equidimensional c ros s  sections 

3 .  Complex tape-like c r o s s  sections 

4. Special shapes and mater ia l s  

5. Hexagonal tube studies 

B. Throughout the above investigations conduct the following studies: 

1 .  Evaluate s t ruc tura l  advantages of filament fo rms  by comparison 

with conventional c i rcu lar  solid and hollow f ibers .  

Investigate packing densities including the advantages of precis ion 

winding as well a s  the feasibility of bonding with res ins .  

2.  

3 



3 .  Determine the l imitations of principle de signs and develop- 

ment  processes .  

Attempt to find methods that will provide solutions to the 

l imitations found in designs and processes .  

4. 

4 



11. EXPERIMENTAL PROCEDURES 

The P r e f o r m  Attenuation Shaped F ibe r  Forming P r o c e s s  

The p rocess  tltilizes a mechanical device for  feeding a shaped preform 

slowly down into a furnace with a carefully tailored ver t ical  temperature  

gradient and good temperature  control, as well as a winder whose speed can 

be coordinated with that of the feeder .  Figure 1 i s  a sketch showing the e s sen -  

t ia ls  of the process .  The furnace i s  shown in section so detai ls  of the attenu- 

ating preform and its relation to the heating elements and the cooler can be 

seen. 

The feeder mus t  lower the preform vertically into the furnace a t  a slow, 

monotonic r a t e  which can be readily adjusted. The preform m u s t  in turn 

enter  the furnace through an opening which permi ts  a minimum of draft  to 

escape,  minimizing the chimney ef fec t  and turbulence in the furnace.  

Although there  a r e  special  ca ses  for some p re fo rm shapes,  the bes t  

furnace design for  most  shaped f iber  forming provides a gradual i nc rease  in 

tempera ture  as the preform moves downward. 

is  reached a t  about the point where final attenuation takes  place. 

point, the tempera ture  m u s t  be lowered abruptly to provide essentially an 

air quench and thereby maintain the shape of the fi lament.  This ver t ical  

t empera ture  gradient is graphed in Figure 2. 

The maximum temperature  

At this 
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A photograph of the forming apparatus and winding equipment i s  shown 

in Figure 3 .  

the attenuated section of the preform in relation to the heating elements and 

cooler.  

The furnace has been partially dismantled to show the position of 

P re fo rm Fabrication 

I n  o rder  to draw a shaped fiber by the preform attenuation o r  rod 

drawing process ,  i t  i s  f irst  necessary to fabricate an elongated preform.  I t s  

c r o s s  section should approach that of the f iber  i t  i s  desired to produce. 

example, to make hollow square f ibers ,  a long slender open ended square 

box is  assembled f rom four narrow s t r ips  of glass  cemented together with 

cellulose acetate adhesive. 

F o r  

The acetate burns off the glass a s  the preform enters  the top furnace 

The stiffness of the glass  maintains the separate  pieces in proximity opening. 

because of the unburned cement higher up on the preform.  

i s  shown in Figure 4. 

manner.  

the sides of the fi laments will tend to separa te  at the joints af ter  the adhesive 

has  burned away during the drawing down operation. 

A typical p reform 

The glass  plate mus t  be cut and glued in  a prec ise  

I f  the surfaces  do not abut on one another throughout their  length, 

6 



Prepara t ion  of Samples for Examination 

In order  to examine under the microscope the resu l t s  of the filament 

forming studies,  i t  has  been necessary  to develop a technique for  mounting, 

grinding, polishing and lighting the bundles of shaped filament that  had been 

wound on a mandrel .  

bundle about 1/8" in diameter .  

cosity epoxy res in  and cured. 

bundle so the f ibers  run normal  to its surfaces.  

polished using good metallographic specimen preparation pract ice .  

pedient that has  ass i s ted  in obtaining sufficient contrast  between glass  and 

resin,  especially f o r  photomicrographs, has been the scorching of the sur face  

of the sample a f t e r  f inal  grinding and then polishing only a minimum amount 

thereaf ter .  

to  the top surface of the wafer  mounted on a microscope slide. 

thinnest wal ls  a r e  difficult to light and photograph in this way. 

Good resu l t s  have been achieved by tying f ibers  into a 

This bundle is  then immersed  in a low v i s -  

A thin wafer is  cut out through the embedded 

Then the wafer i s  ground and 

An ex-  

The light then is  t ransmit ted vertically up through the g lass  wal ls  

Only the ve ry  

7 
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FIGURE 2 

FORMING AND WINDING APPARATUS 

FIGURE 3 

TYPICAL PREFORM A F T E R  ATTENUATING 

FIGURE 4 
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ILI. FILAMENT FCRMING STUDIES 

Literal ly  hundreds of different c ross  sectional shaped fi laments were  

formed and examined. 

with through proper  control of the many variables in the forming p rocess  des -  

cr ibed ea r l i e r .  A summary  of the shapes i l lustrated in  this repor t  i s  found in  

Table I. 

achieved through proper  control of the variables and the charac te r i s t ics  of the 

fi lament formed including its s ize .  Table I should provide a convenient guide 

to the 64 photomicrographs of various filament c r o s s  sections.  

Each shape has  i t s  own peculiari t ies that m u s t  be dealt 

It descr ibes  the shape of the preform, the attenuation conditions 

Elementary  Shaped Hollow Fi laments  

Small  p re fo rms  of simple c r o s s  section c rea te  fewer problems in r e -  

A producing a fi lament whose shape is a miniature of the original preform.  

hollow tr iangular  f iber  i s  shown in  F igure  5,  

section through an embedment. 

mean  that the tempera ture  got high enough during forming that the lowered 

viscosity of the g lass  permit ted the surface tension to start deformation toward 

a round f ibe r .  When one thinner wall is  used in the preform,  the distortion 

becomes unsymmetr ical  and the thinner w a l l  begins to thicken as in F igure  6. 

To avoid the bulging s ides  noted in  the filaments of F igu re  5, 

1 .  5 inches of water  was  applied to the inter ior  of the preform and a s e r i e s  of 

a photomicrograph at lOOX of a 

The slightly convex wal ls  a r e  interpreted to 

a vacuum of about 

9 
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filaments were  drawn like those shown a t  lOOX c r o s s  section in  F igure  7.  

While almost complete collapse i s  the resul t ,  the fi laments a r e  interest ing in  

that they have a Y shape that ma tes  readily. Although hollow, they a r e  ex-  

t remely rigid. 

one thinner side, the s ides  of the fi lament may  be formed s t ra ight  (F igure  8) 

ra ther  than rounded a s  in F igure  6. 

If a slight vacuum is applied to the tr iangular preform with 

A variation of this design (F igure  9) consis ts  of cementing a rod to 

each corner  of the preform to give added g lass  thickness a t  the joints o r  c o r -  

ne r s .  

those in Figure 9 except that the plates were  cut overwidth and the co rne r  o r  

glue joint was  made  a t  one-fifth the width, 

outward at each corner .  

angle formed between this protrusion of one plate and the adjacent piece.  When 

the pressure  was  reduced inside the preform,  a t rue  Y shaped fi lament was  

formed with circular  ends o r  lobes and with a small hole in  the center .  

In F igure  10 a r e  shown fi laments made  f rom a triangular p re fo rm like 

allowing a projection of the plate 

The rod was  then glued to sea t  within the obtuse 

Similar studies were  made with hollow square fi laments (F igure  11). 

Using the same thickness of g lass  on all four walls,  the essent ia l  shape of 

the preform w a s  maintained. 

with square edges. 

leave excess edge of each end showing. 

f i laments can be made with f la t  s ides  at c r o s s  sectional dimensions of 2 mils 

The g lass  f o r  the t r iangular  p re fo rms  was  cut 

At a sixty degree angle, these edges do not ma te  well  but 

The resu l t  was  that the hollow square  

10 



o r  l e s s .  By making the preform with adjacent s ides  of different thicknesses 

1. 0 : 1. 5, a rectangle resul ted with the heavier sides slightly bowed inward 

(F igure  12). 

having s ides  of equal thickness, an X resulted as  shown in  F igure  13. 

the p r e s s u r e  was  slightly reduced within the hollow square preform with 

adjacent s ides  of different thicknesses (1. 0 : 1. 5), the par t icu lar  f o r m  shown 

in F igure  14 was  the result .  

When the p r e s s u r e  was lowered within a hollow square  preform 

When 

Hexagonal hollow filaments were  also studied. In another section of 

this  repor t ,  the manufacture of s t ra ight  one-half inch and one inch diameter  1 

To fur ther  study the effect of thickness of the wal ls  of a hollow preform 

on fi lament geometry,  a single piece of window glass  (0. 070" thick) was  in-  

s e r t ed  and glued within a very thin-walled (0 .  036") soda-l ime g lass  tube ( a  

f luorescent  tube with the coating removed by washing) to give a c r o s s  section 

like 0. The result ing fi lament c r o s s  section i s  shown in  F igure  15. Possibly 

slightly different softening tempera tures  caused the distortion. When plates  of 

similar thicknesses  were  in se r t ed  to f o r m  an X within the tube, the resulting 

shape of the fi lament resembled a swastika (F igure  16). 

mained intact  although i t  is  so thin that the t ransmit ted light is  insufficient 

for  sati sf ac  to ry  photography . 

The g lass  tube r e -  

hexagonal tubes for  making p re fo rms  is  discussed in detail.  A single hollow 

hexagonal preform,  one-half inch in diameter was  formed f rom a g lass  tube 

11 
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of s imilar  s ize .  

had thin walls and a hexagonal shape both inside and out (F igure  17). 

the p re s su re  on the ins  ide of the preform ( 1 .  5" water)  and forming the filament 

produced a six tooth gear  effect that readily interlocks (F igure  18). 

A hexagonal filament was formed f rom the hexagonal tube. I t  

Reducing 

I t  was difficult to form hollow hexagonal shaped fi laments f rom s t r ip s  

of glass  glued together to form a hexagonal preform.  

found with the preforms glued as i l lustrated in  Figure 19a, while the fi lament 

c r o s s  sections a r e  shown in F igure  19b. 

the la rger  amount of glass  at the junction points. 

The grea tes t  success  was  

The inside surface went round due to 

In forming a hollow hexagonal fi lament f r o m  l a rge r  hexagonal p re fo rms ,  

the ratio of wall thickness to preform "diameter" m u s t  be low. The wall  thick- 

nes s  should probably be . 02" o r  l e s s  in o r d e r  to maintain the 60° angles a t  each 

corner .  

They would not draw into fi laments with sha rp  co rne r s .  

se t  up equipment to draw one inch hexagonal tubes f rom round tubes of the same 

glass  formulation. These tubes, having a wall thickness of 0. 015", drew to 

sharp  angled fi laments.  

Some 1" hexagonal tubes with wal ls  0. 030" in  thickness were  purchase( 

I t  was necessa ry  to 

I t  w a s  found in previous work that round hollow filaments with exceed- 

ingly thin walls can be made i f  the upper end of the preform tube is  closed 

during the forming operation, thus a slightly elevated p r e s s u r e  caused by the 

12 



heated a i r  can be c rea ted  within the tube. This p r e s s u r e  causes  the glass  

filament diameter  to remain relatively large as  the fi lament wall i s  thinned 

through attenuation. 

may be.  

to difficulty in getting the thin, bright line onto film. The t rue  wall thick- 

nes ses  a r e  seen bet ter  where the transmitted light is  low and the contrast  is 

therefore poor. .They may  

be filament wound to form a hoop with a resulting specific gravity in the 

o rde r  of 0. 7 .  

F igure  20 i l lus t ra tes  how thin-walled these fi laments 

The walls of these f i laments  look thicker than they actually a r e  due 

The bulk density of these filaments i s  under 0. 1. 

Small  tubes with a closed end may  be used to c rea te  cer ta in  geometric 

effects  within m o r e  complex fi lament s t ructures .  Three  c i rcu lar  tubes having 

about the same wall thickness were  telescoped one inside the other .  

inside tube was  held in place by means of small  diameter  tubes, 

course.  F igure  21 shows a number of filaments drawn f rom this preform.  

The small tubes of the inner layer  were  offset 60° f rom those of the outer 

layer .  

the upper end of the l a rge r  p re fo rm tubes was left unsealed. 

of the p re fo rm entered the furnace and was attenuated into the fi laments i l lus -  

trated.  The smal le r  o r  spacer  tubes became very thin-walled but on attenua- 

ting downward kept the inner telescoped tubes f rom joining the outer tube. 

resu l t  is the filament shown. 

Each 

three  in  each 

Each  of these smal le r  spacer  tubes were  closed on the upper end while 

The lower end 

The 

If the number of tubes in the outer layer  were  

13 
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doubled in  number,  direct  contact between the middle and outer telescoped 

glass  was avoided in the drawn fi lament (F igure  22).  

A recent study ( 3 )  has  shown that increased  t ransverse  stiffness may 

be obtained in fi lament wound cylindrical s t ruc tures  i f  elliptical f ibers  instead 

of round fibers a r e  used and i f  these f ibers  a r e  wound with the long axis of the 

elliptical c r o s s  section paral le l  to the axis  of the cylinder. Some t ime was  

devoted to developing techniques for making both solid and hollow elliptical 

filaments. 

Hollow rectangular preforms yielded slightly elliptical f i laments but 

with ends of the long axis squared (F igure  23) .  

were  added, reducing the segment to a 3 :  1 width-to-thickness ratio,  the 

degree of bulging was controlled (F igure  24) .  

member  was added, reducing the segment ratio to 2 :  1, a rectangular f o r m  

with straight sides resulted (F igure  2 5 ) .  

of some windings made into a ring on a mandrel ,  showing how well they 

packed. 

When two c r o s s  m e m b e r s  

When an additional c r o s s  

The section photographed he re  was  

Hollow elliptical f ibers  were  f i r s t  studied using four cut plates  of 

g lass  segmented to make a preform having a diamond shaped c r o s s  section. 

The surface tension of the softened g lass  caused the diamond to d is tor t  into 

an elliptical o r  football shape, as can be seen in the photomicrograph of the 

14 



c r o s s  section (F igure  26). the technique 

discovered while investigating hollow rectangles (F igure  23) was applied. 

By slightly overheating a hollow rectangular preform,  

o r  shor t  dimension, a short  radius could be formed tangent with the long 

radius on the length of the rectangle. 

of these fi laments with different length-to-width ratios.  

To eliminate the pointed ends, 

especially on the ends 

Figures  27 and 28 show c r o s s  sections 

Hollow elliptical f ibers  may be made in still another way. A one inch 

diameter  tube with relatively thick wal ls  (0. 03") and a flat  g lass  plate in-  

se r ted  a c r o s s  its internal diameter  may be drawn to form a fi lament like 

those shown in F igure  37. 

Solid elliptical f ibers  were  made  using a variety of preform shapes. 

The work done at General Elec t r ic  ( 3 )  had shown analytically that the ma jo r  

to minor  ax is  ra t ios  should be four to one o r  greater .  

produce ell iptical  f ibers ,  

with the l a rge  diameter  rods in the middle and gradually sma l l e r  d iameter  

rods to the edges to f o r m  the shape of an ellipse. 

elevated tempera tures  caused them to fuse together while being drawn into 

a f iber .  

because a tempera ture  sufficient to cause complete fusion also caused 

excessive shortening of the longer axis by surface tension. 

hollow rectangular  p re fo rm would yield a somewhat elliptical shape (Fig.  23), 

In  one technique to 

g lass  rods of various s izes  were  a r ranged  in a line 

Operating at slightly 

I t  was  found difficult to make high rat io  e l l ipses  (F igure  29) 

Although a 
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a solid rectangle yields an almost  f la t  filament with rounded ends (F igure  30). 

However, by grinding off the co rne r s  of a narrow s t r ip  of glass ,  i t  was found 

that the crude elliptical section of the preform could be refined in drawing the 

fi lament form (Figure  31). 

ratio preforms for drawing into elliptical shaped f iber ,  

shape could probably be obtained by hot rolling. 

Should i t  be required to make a quantity of high 

the des i red  preform 

Complex Equidimensional C r o s s  Sections 

Honeycomb filaments may be made by severa l  techniques. Making a 

preform with s ix  round tubes in a hexagonal a r r a y  (but without a center  tube) 

drew down to an interesting filament. 

250X i s  shown in F igure  33. 

straightened the inside surfaces  to make a hexagonal hole. 

may be filament wound (F igure  32). 

interlocked to form a hollow, light s t ruc ture  with low resin content. 

An enlargement of this f i lament at 

The surface tension a t  the inside co rne r s  has  

This unit s t ruc ture  

The outside semic i rc les  a r e  mechanically 

Hollow filaments with honeycomb walls  a r e  readily made using an 

a r r a y  of round tubes cemented together. Ell iptical  shapes with different  

major  to minor axis ra t ios  a r e  shown in  F igu res  34, 35 and 36. 

ments  with segmented wal ls  were  a l so  made (F igure  38). 

Square fila- 

A completely honeycomb f i lament  was  a l so  investigated. A square 

fi lament was made f rom a 4 x 4 s tack of sealed tubes and an outside plate 

16 



about 50% thicker than the tube walls.  

Figure 39 .  

appeared. 

a t  250X shows that the slightly increased  pressure  within the tubes with a 

sealed end caused a flattening of the s ides  of the holes. 

st i l l  higher p r e s s u r e s ,  the holes could be developed to yield a lmost  a square 

shape. F igure  41 shows hexagonal shaped fi laments having a honeycomb 

inter ior .  Tape shapes can also be made in  a s imi la r  manner .  

shows an enlargement at 250X of a honeycomb tape filament c r o s s  section. 

Note that the holes a t  the outside short  edges of the tape a r e  c i rcu lar  but 

become quickly oblate with the mos t  elliptical holes in  the center.  

that the center  section i s  thinner than at the ends. 

that  the motion of the edges in the drawing down of the preform crea ted  a 

slight s t r e s s  a c r o s s  the center section of the attenuating tape, distorting and 

thinning the tape between the ends a s  indicated. 

have also been formed using a one inch diameter thin shell outer tube filled 

with 1/8" diameter  tubes with one closed end. 

The resulting filament i s  shown in 

Note that the "quadri-corn" voids between the tubes has  d is -  

An enlargement of one of these filament c r o s s  sections (F igure  40) 

Presumably,  a t  

F igure  42 

Note also 

These effects suggest 

Ci rcu lar  honeycomb f i laments  

The wall thicknesses of the 

o u i e ~  titbe aiid tlie siilaller tubes a r e  about equivalent. Such 2 shape suggests  

f i l ter  applications. 

Honeycomb f i laments  and tapes can be drawn directly f rom a bundle 

of smal l  sealed tubes that have been.  glued together. The c r o s s  sections 
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shown in F igure  43 a r e  an example. Note that the outside surface i s  extremely 

thin. The inside parti t ions were  formed f rom two tube wal ls  while the outside 

wall was formed f rom only one. 

Complex Tape-like C r o s s  Sections 

Solid Filament Tape: 

Concurrently with this program, another quite different study (4) i s  

being conducted which uses  one specific shape of filament. 

program, hoops and cylinders a r e  being made of a flat rectangular-shaped 

filament about 0.0005” thick and 0. 016” wide. 

In this para l le l  

These microtapes can be 

wound to form composites with a glass  content approaching lOO’%. 

There a r e  many var ients  possible in the basic tape shape. F o r  example, 

a preform may be made by glueing the edge of narrow s t r ips  to the base plate. 

The resulting fi lament i s  like a zipper (F igu re  44). 

were  glued in a triangular stack to opposite s ides  of the plate, 

tape resulted (F igure  45) .  Tapes may a l so  be made f rom rod. 

were offset f 1200, 

E -g la s s  rods without a plate to support  them, slightly offset and drawn to a 

tape form,  retained a slight interlocking effect  (F igure  47). 

even made that retained the l e t t e r s  of the p re fo rm - NASA (Figure  48). 

When three  sma l l  rods 

a hump-backed 

When the rods 

a tape with a mechanical locking feature  resul ted (F ig .  46). 

A tape fo rm was  

AI- 

ternating large and smal l  diameter  rods,  each in line in the p re fo rm,  gave 

a c r o s s  section of a tape fi lament f o r m  which has  a s e r i e s  of shallow bumps 
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on its surface (F igure  49). 

inser ted  in line between two l a rge  diameter rods,  

appeared (F igure  50). 

unit width. 

unit groupings a s  in Figure 45. 

these preforms were  spaced fa r ther  apar t  on the plate, the unusual three 

unit tape shown in F igure  52 resulted.  

rods (2 X thickness of plate) were  mounted in spaced fashion back to back on 

either side of the plate and the result ing preform was attenuated, 

what ungainly tape resulted (F igure  53). Had the spacing between the adjacent 

rods been slightly grea te r ,  the corrugations would have meshed. 

However, when two small  diameter  rods a r e  

a useful interlocking shape 

I t  was formed to give equal spacings a c r o s s  its five 

F igure  51 shows a five unit tape with the same basic preform 

When the three rod pyramid groupings of 

When single relatively la rge  diameter  

the some- 

When three sealed tubes w e r e  stacked in a pyramid, as were  the rods,  

to f o r m  the preform used to make the tape fi laments of F igure  51, the fila- 

men t  c r o s s  section drawn looked l ike those i n  F igure  54. When only single 

sealed tubes back to back were  used on the same  plate base,  the tape fila- 

ments  shown in F igure  55 resulted.  This form compares  with the f i laments  

in  F igure  53 drawn f rom plate and rod. 

H 01 low Fi lam en t T ape : 

The s implest  f o r m  of hollow filament microtape is  shown in F igure  56, 

a l ine of sealed tubes that have the appearance of being la teral ly  stretched. 

In  forming the microtape,  the glass  a t  the edges must  t ravel  a longer la te ra l  
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distance than the glass  at the center section. 

short  and the difference in t ravel  distance changes rapidly, the edges tend to 

remain wider apa r t  applying a s t r e s s  to s t re tch  in the middle tubes. 

filaments in Figure 57 were  made f rom a preform in which the sealed tubes 

were  offset a s  were  the rods in Figure 46. Sealed tubes, aligned to f o r m  a 

preform with a rectangular c r o s s  section, instead of producing a filament like 

those in Figure 23, made the collapsed filament s t ruc ture  in F igure  58. How- 

ever ,  

s t ructure  (F igure  59). 

f rom plate (F igure  24 and 25). 

When the heating zone i s  too 

The 

adding a sealed tube spacer  made a tape with a relatively well-oriented 

This fi lament compares  favorably with those drawn 

Hollow filament tapes were  made using a line of tubes with pyramids 

Two 

In the la t ter  m i c r o -  

of th ree  tubes periodically placed to corrugate  the surface of the tape. 

different  spacings a r e  i l lustrated in F igu res  60 and 61. 

photograph, note that some of the s tacks of th ree  did not sea l  to the center  

line of microtubes during drawing. 

Two hollow tape shapes were  studied that would have high rigidity. 

These a r e  pictured in F igu res  62  and 63. 

t r u s s  and would have high stiffness-to-weight f r o m  edge to edge. 

second was f r o m  a preform made by mounting plates  on ei ther  side of a 

line of tubes. I t  would display high stiffness-to-weight f rom flat to flat. 

The first was  made like a bridge 

The 
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Special Shapes 

While working on these new forms,  i t  became evident that cer ta in  

types might be chopped and used to make  improved molding compounds. 

very simple f o r m  i s  shown in Figure 64. 

cutting a slit in the circumference of a tube. When chopped, a considerable 

number of these C-shaped filaments might interlock to fo rm s t r ings  in a l l  

three places .  

s t ra ined in one direction of movement and, therefore ,  should m o r e  tightly 

gr ip  the g l a s s  of another filament that has  been inser ted  within this enclosure.  

Figure 65 shows an X-shaped filament of four fi laments connected with f i lms 

of glass.  

and groove manner .  

should be difficult to remove. 

A 

The preform used  was  made by 

The polymerized res in  within the radius of curvature  is  r e -  

They could f i t  with the filaments shown in  Figure 66 in a tongue 

Once the tongue has  been shoved into the groove, it 

Packing Density and Precis ion Winding 

In o r d e r  to take advantage of most  of the shaped fi laments which it 

has  been demonstrated can be formed, i t  i s  essent ia l  to be able to wind them 

in  proper  relationship to one another. 

with f ia ts  against  f ia t s  or Elating surfaces  agair,st each ~ t h p r .  

Typically this means  close packing 

During the course of the work which has  been done on the afore-  

mentioned micro tape  program fo r  NASA Lewis Research  Center  (4), a grea t  

deal of effort  h a s  been applied to the difficult task of winding fi laments in 
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perfect  juxtaposition. The l a rge r  dimension of a typical microtape c r o s s  

section i s  0. 015" while the thickness is only .0005".  

i s  l i t t le or  no "curb" to siide one microtape against i t s  neighbor. 

additional work was done under this contract  to solve the problem using m i c r o -  

tape a s  a model shape. Since i t  i s  impossible to postimpregnate a properly 

wound microtape specimen with resin,  it required wet winding. A substantial 

improvement was achieved by combining wet winding and accurate  guide ad-  

vancement with wiping o r  squeegeeing right a t  the point of tangency of the 

mic  rotape with the mandrel .  

This means  that there  

Some 

Figure 67 i s  typical of the poor placement readily obtained by i m p e r -  

fect  winding. F igure  68, on the other hand, i l lus t ra tes  the improvement pos-  

sible when a l l  aspects  of winding were  functioning properly and wiping was 

helping to provide perfect placement.  

perfect  agreement with the t r ave r se  advancement, that the width remained 

near ly  constant, that the resin was  at proper  viscosity and that the wiper  was  

doing i t s  job in a satisfactory manner .  

This means the tape width was  in  nea r  

The improved winding technique should help to uti l ize the multitude of 

shaped fi laments DeBell & Richardson, Inc. has  developed under this con- 

t r a c t  in  high s t i f fness  -to-weight s t ruc tu res  and other special  purpose com-  

posite s. 
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Although this contract  speaks of ceramic f ibers ,  there  was  some 

in t e re s t  expressed  in applying the preform attenuation p rocess  to cer ta in  

of the m o r e  o r  l e s s  amorphous organic mater ia ls .  

notes on the resu l t s  of a cursory examination of drawing organic fi laments.  

Appendix I11 is  some 

Hexagonal Tubes 

In view of the perfect packing possible with hexagonal f ibers ,  i t  was  

planned a t  the outset  that this program should include a substantial effort  on 

hollow hexagonal tubes and, m o r e  especially, hollow filament drawn f rom 

them as well  as honeycomb filament made f r o m  a number of hexagonal tubes 

joined together. 

First, a sea rch  was made to find a commercial  supplier of hexagonal 

Prec is ion  Electronic Glass C o . ,  by altering their  p rocess  some- g lass  tubing. 

what, were  able to extend the length of tube they could supply to about 18 inches. 

This i s  still quite short  for u se  with the preform attenuation p rocess ,  e s -  

pecially for  making a long run under stable conditions such as a r e  required 

for winding a complete hoop o r  short  cylinder. 

besides  high cost ,  that these hexagonal tubes had was the relatively thick 

wall; that is, the degree of hollowness was too low (low rat io  of I. D. to 0. D. ) 

and the c o r n e r s  were  rounded on the exter ior .  Specifically, the manufactured 

tubing was  28 mm outside a c r o s s  the flats and 25  mm inside. 

Another distinct disadvantage, 

This wall  
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thickness of 1. 5 mm is too great  for  fabricating preforms where walls may 

be doubled in  making up honeycombs. 

ficult to draw down even singly into a hollow hexagonal fi lament while main-  

taining c r i sp  corner  detail. 

The thick-walled tube was also dif- 

In view of the unavailability of suitable hex tube stock, a p rocess  was  

developed wherein i t  was possible to draw 1. 5 m e t e r  long hex tubes, 12. 7 mm 

outside ac ross  the flats with a 0. 9 mm wall and la rger  tubes, 2 m e t e r s  long 

25. 8 mm a c r o s s  the f la ts  and only 0 . 7  mm wall. 

It w a s  soon demonstrated that a round tube could be drawn over a 

hexagonal graphite plug to fo rm hex tubing. 

thickness and s t ra ight ,  long, untwisted tubes took a g rea t  deal of refinement. 

However, making uniform wall 

Basically, a modification of the shaped fiber forming p rocess  was  

The round tube was  fed slowly down into a furnace with a thin horizon- used. 

tal hot zone. 

was  supported so  i t  extended vertically through the hot zone. The lower 

end of the tube was  grasped beneath the furnace and connected by a cable 

to a constant torque device some distance beneath the furnace.  

The tube was fed down over the hexagonal graphite plug which 

The f i r s t  arrangement  had the graphite plug supported by a water  

cooled b ras s  plug while the water  tubing in  and out supplied the mechanical 

support. Thus, the maximum length of hex tubing that could be drawn was  
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l imited by the graphite plug support. 

where the s t re tched tubing accumulates rather than above the furnace where 

the unstretched feed tube s t a r t s  out. 

l imited the amount of tubing to be made.  

In other words,  the support i s  located 

Therefore,  the plug support doubly 

The constant torque device was used to pull the tubing when a low 

enough viscosity (high enough temperature)  was reached to achieve draw 

down. The use  of the constant torque puller was  essent ia l  to determining 

operating conditions for optimum hex tube forming. On the other hand, it 

permit ted the drawing speed to vary even though the feed speed was  constant. 

This speed change could be attr ibuted to  slight temperature  variations 

changing viscosity and variations in friction on the plug caused by any slight 

misalignment.  

installed to minimize any twisting. 

The resu l t  was wall thickness variation. A guide had to be 

Using the operating conditions established by these studies,  a new 

apparatus w a s  built with feeding and drawing run off the same motor .  Through 

an adjustable ra t io  device the degree of draw down for  suitable hexagon 

forming and the final wall thickness were controlled. The hexagonal graphite 

plug was  supported f r o m  above the furnace which permit ted much longer tubes 

to  be produced. 

tube. 

Some were  made with over two t imes  the length of the feed 

Only a f te r  very  careful  alignment w a s  i t  possible to make long straight 
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tubes. Finally, complete lengths could be made with no m o r e  than 2 o r  3 mm 

curvature.  

Once successful operation was  achieved, a stock of about 50 each of 

la rge  and small  hexagonal tubes was  made up. 

required to make up preforms and draw f ibers  in the shaped filament studies. 

These a r e  being used as 
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Figure  
No. 

5 

6 

7 

8 

9 

10 

11 

12 

TABLE I 

FILAMENT FORMING STUDIES SUMMARY 

A Key to the Photomicrographs 

P r e f o r m  
C r o s s  Section (a) 

compo site equi la teral  
t r iangle ,  sp i r a l  overlap 

e qui 1 at e r a1 t r i an  g 1 e 
one thin wall  

s a m e  as Fig .  5 

s a m e  as Fig .  6 

equi la teral  tr iangle 
p lus  rod  at each 
co rne r  

e quilate r a1 tr iangle 
sp i r a l  ove ?lap, 
rod  in each obtuse 
angle 

hollow square  

hollow square 

Attenuation 
Conditions (b) 

Fi lament  C ha rac  t e  ri s t ic  s and 
C r o s s  Section Dimensions (C) 

norma l  

no rma l  

no rma l  furnace 
vacuum inside 
p re fo rm 

norma l  furnace 
s li ght vacuum 

norma l  

no rma l  furnace 
vacuum inside 
p re fo rm 

norma i  

no rma l  

side wal ls  convexed 
t r iangles  - . 0025" 
wal ls  - . 0003" 

arrowhead - . 003" 
wal ls  - . 0007" 

concave wal ls  
Y -shaped - . 008 j1  

arrowhead - .003" 
f la t  thick wal ls  - . 0005" 

good reduction of p re fo rm 
.0025" 0. A. 
;walls - . 0002" 

lobed Y - .0035" 
wall  - . 00035" 

good square - .002" 
wal ls  - . 0003" 

thick walls,  . 0003", 

thin wal ls ,  . 0002", 
convex, 

con cave 
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TABLE I (continued) 

F igure  
No.  

P r e f o r m  
C r o s s  Section 

Attenuation 
C ondi ti on s 

F i lament  Charac t e r i s t i c s  and 
C r o s s  Section Dimensions 

X with quadricorn hole 
. 0 0 3 "  0. A. 

13 

14 

15 

16 

s a m e  as Fig.  11 no rma l  furnace 
vacuum 

norma l  furnace 
vacuum 

flat  thick wal ls  - . 0005" 
concave thin - . 0002" 

.003"  0. A. 

s a m e  as F i g .  12 

wrinkled d iameter  - . 004" O.A. 
bridge - .0005" 
sheath - . 0002" 

theta with thick wall  
bridge 

normal  

no rma l  thick walled X in  
thin walled tube 

swastika in  sheath - 
.0025" 0. A. 

X - . 0006" 
sheath - . 0002" 

thin walled ( .  0002t1) 
hollow hex - . 0023" 0 . A  

17 

18 

19 

20 

1/2" hollow hex tube no rma l  

s ix  toothed gear  - 
. 0015" 0. A. 

1" thin walled 
hex tube 

no rma l  furnace 
vacuum 

thick walled hex - . 003" 0. A. 
c i r cu la r  inside - . 002" I . D .  

composite sp i r a l  
hex 

no rma l  

very  thin walled (<. O O O l ' t )  
random s ize  

. 0025" typical 0. D. 

round tub e no rma l ,  top of 
tube sea led  

no rma l ,  top of 
space r  tubes 
sea led  

voids of space r  tubes 
exaggerated - .0055" 0. D. 

21 3 concentr ic  tubes 
spaced with tubes 

22 3 concentr ic  tubes 
m o r e  s p a c e r s  

no rma l ,  top of 
space r  tube s 
sea led  

improved  symmet ry  
.0075" 0. D. 
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TABLE I (continued) 

F igu re  
No .  

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

P r e f o r m  
C r o s s  Section 

Attenuation 
Conditions 

hollow rectangle 

hollow rectangle 
2 br idges  

hollow rectangle 
3 br idges 

diamond 

hollow rectangle 

high rat io  hollow 
rectangle 

var ious  diam. rods 
a r r anged  in  e l l ipse 

solid rectangle 

sol id  e l l ipse 
ground to shape 

6 round tubes 
i n  hexagonal 
ar  r an  gem en t 

F i lament  Char  a c  te  r i s ti c s and 
C r o s s  Section Dimensions 

no rma l  

no rma l  

no rma l  

sl ight overheat 

sl ight overheat 

sl ight overheat 

distortion approaching 
el l ipse - . 003" x . 012" 

wal ls  - . 0003" 

minimum distortion - 
. 0023" x . 01 1" 

wal ls  - . 0003" 

c r i s p  rectangular  hollow 
f iber  - . 002" x . 015" 

wal ls  - . 0004" 

football shape 
. 0033" x . 006" 

walls  - . 0005" 

hollow el l ipse 
. 002" x . 0045" 
wal ls  - . 0004" 

hollow el l ipse 
. 0017" x . 0083" 
wal ls  - . 00035" 

marked  overheat  fair ell iptical  c r o s s  
section - .0025" x . 0055" 

overheat oval with flat s ides  
. 0013" x . 003" 

normal  

normal  

solid e l l ipse 
. 0007" x . 0025'' 

per fec t  hex center  
scalloped 

. 007" O.A. 
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TABLE I (continued) 

F igure  
No.  

P r e f o r m  
C r o s s  Section 

Attenuation 
Conditions 

Fi 1 am en t C ha r a c t e r i s t i  c s and 
C r o s s  Section Dimensions 

enlargement  of 32 
. 007" 0 .  A. 

33 

34 

35 

36 

37 

38 

s a m e  as F i g .  32 no rma l  

hollow honeycomb el l ipse 
. 0035" x . 013" 
. OO055t' walls of . 0001'' 

films 

hollow el l ipse of 
3 mm tubes 

tubes sealed 
no rma l  

hollow ell ipse of 
3 mm tubes 

tubes sealed 
no rma l  

hollow honeycomb el l ipse 
. 0023" x . 0045" 

hollow ell ipse of 
3 mm tubes 

tubes sea led  
no rma l  

hollow honeycomb el l ipse 
. 0021" x . 0046" 

el l ipse with solid ma jo r  
axis  - . 0025" x . 0085" 

. 0005" wall  

thick walled tube, 
thick walled d iameter  

no rma l  

hollow square of 
3 mm tubes 

sea led  tubes 
no rma l  

hollow honeycomb square  
. 0045" x . 0045" 
. 0015" wall 
. 0001" f i lms  

39 solid square of sea led  tubes 
3 mm tubes - norma l  
outside plates  

s oli d s qua r e  honey comb 
exaggerated holes 

. 006" x . 006" 

40 same  as Fig .  39 s a m e  enlargement  of F i g .  39 
. 006" x . 006" 

41  solid hexagon of sea led  tubes 
3 mm tubes - n o r m a l  
out side plates  

solid hex honeycomb 
exagge rated holes 

. 0 0 6 "  0. A. 

42 high rat io  rectangle sea led  tubes 
of 3 mm tubes - n o r m a l  
outside plates  

honeycomb tape,  holes  
n e a r  center  s t re tched  

.020" x .003" 0. A. 

. 0006" holes 
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TABLE I (continued) 

F igu re  P r e f o r m  
No. C r o s s  Section 

Attenuation F i lament  Charac te r i s t ics  and 
C ondi tions C r o s s  Section Dimensions 

43 oval of 3 mm tubes 
no outside plates  

sea led  tubes 
no rma l  holes  - thin wal ls  

hon e y c om b, en1 ar g e d 

. 002" x . 007'' 

normal  zipper -like c r o s s  section 
good reproduction of 
p re fo rm - . 0015'' x . 011" 

44 shee t  of g l a s s  with 
na r row s t r ip s  on 
edge 

I 45 shee t  of g l a s s  with 
3 s tacks  of 3 rods  overheat  
on e a c h f a c e  

very  slight good mating sur faces  
. 0015" x . 004" 

46 co r  rug ate d tape 
. 002" x . 027" 

zig zag a r rangement  no rma l  
of rods  

I 47 zig zag  a r rangement  no rma l  
of E -g la s s  rods  

cor ruga ted  tape 
. 0013" x . 016" 

good reproduction of 
in t r ica te  p re fo rm 

.010" x .002" 0. A. 
each le t te r  - . 0015" x . 002" 

l e t t e r s  NASA norma l  
between plates  

48 

var ia t ion of cor ruga ted  
tape - .0012" x .007" 

a l te rna te  la rge  and 
small rods  in  l ine 

no rma l  

no rma l  

49 

50 

51 

52 

mating cor ruga ted  tape 
. 0033" x . 026" 

a l te rna te  1 l a rge  
and 2 small rods  in  
l ine 

ve ry  slight c r i s p  cor ruga ted  tape 
unde r heat . 002" x .006" 

.0005" br idge 

wide spaced 3 unit  
tape 

slight overheat cor ruga ted  tape variation 
. 003" x . 014" 

l a r g e  rods  spaced 
on sheet  
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TABLE I (continued) 

F igure  
No. 

P r e f o r m  
C r o s s  Section 

Attenuation 
Conditions 

F i lament  Charac te r i s t ics  and 
C r o s s  Section Dimensions 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

32 

five rods in  row slight over  heat corrugated tape variation 
. 0017" x . 0065" 

sheet  of g l a s s  with 
s tacks of 3 tubes on 
each face 

corrugated tape var ia t ion 
. 0045" x . 016" 
. 0001" films 

sealed tubes 
no rma l  

cor ruga ted  tape variation 
. 003" x . 015" 
. 0001" films 

sheet  of g l a s s  with 
single tubes on each 
face 

sealed tubes 
no rma l  

line of tubes sealed tubes 
normal  

hollow m i c r o  tape 
. 0006" x . 015" 
. 000 15" wall 

zig zag a r rangement  
of tubes 

sealed tubes 
no rma l  

cor ruga ted  hollow m i c r o -  
tape - .0015" x .010" 

. O0Ol1' wall  

hollow rectangle of 
3 mm tubes 

sealed tubes 
no rma l  

collapsed s t ru c tu r e 
. 002" x . 015" 

hollow rectangle of 
3 mm tubes with 
br idges  

sea led  tubes 
no rma l  

f ai r reproduction 
. 0025" x . 016" 

ex t remely  low density 
co r  ru  gate d tap e 
. 002" x . 0085" 

hollow tubes in place 
of plate in  F ig .  51 

sea led  tubes 
no rma l  

some distortion 
. 004" x . 021" 

variation of F ig .  60 sea led  tubes 
no rma l  

low density 
high stiffness 

. 0035" x . 018" 

thin walled tubes 
between thin plates  

sea led  tubes 
no rma l  



TABLE I (continued) 

F igu re  P r e f o r m  Attenuation 
No. Cross Section Conditions 

6 3  row of tubes with sealed tubes 
plates  top and bottom norma l  

64 s l i t  tube no rma l  

65 X of sheet with rods  no rma l  
on outside edges 

66 shee t  with rods  on no rma l  
edges 

sheet  of g lass  

shee t  of g lass  

slightly 
unde rheate d 

slightly 
underheated 

F i l amen t  Charac te r i s t ics  and 
C r o s s  Section Dimensions 

fair reproduction 
. 003" x . 017" 

C -shaped 
.0035"  0. A. 
. 0003" wal l  

X-shaped lobed f i laments  
.007" 0. A. 
. 0003" wall  

I -shaped f i laments  
.004" 0. A. 
. 0002" wall 

flat thin micro tape  
poor packing 
. 016" x . 0005" 

flat  thin micro tape  
good packing 

. 016" x . 0005" 
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TABLE I - NOTES 

(a) P r e f o r m  Cross  Section: description of preform assembly 

(b) Attenuation Conditions: conditions within furnace and preform 

1. normal - conditions as descr ibed under Experimental  Procedures .  
Temperature  and gradient to form accurate  c r o s s  section reproduction. 

2. vacuum inside preform - vacuum applied to top of hollow preform.  

3 .  overheat - sufficient heat to cause par t ia l  fusion with some los s  of 
de tai 1. 

4. underheat - lower temperature  to accentuate cr ispness .  

5. tubes sealed - causes  slight internal  p r e s s u r e  due to beating of 
entrapped air. 

( c )  Filament Character is t ics  and C r o s s  Section Dimensions: Capsule 
description of filament c r o s s  section and dimensions. 
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.) - SCALE = .010" - SCALE = .010" 

C X X S  SECTION OF HOLLOW TRIANGULAR FIBER 

FIGURE 5 - SCALE = .010" 

TRIANCULAR FIBERS - ONE THIN WALL 

FIGURE 6 - SCALE = .010" 

TRIANGULAR FIBERS WITH VACUUM 

FIGURE 7 - SCALE = .010" 

TRIANGULAR FIBERS - ONE THIN WALL - VACUUM 

FIGURE a - SCALE = .010" 

TRIANGULAR FIBERS WITH HEAVY CORNERS 

FIGURE 9 

VARIATION O F  FIGURE 9 - VACUUM 

FIGURE 10 
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- SCALE = .010" 

SQUARE FILAMENTS 

FIGURE 11 - SCALE = .010" 

SAME AS FIGURE 11 - VACUUM 

FIGURE 13 - SCALE = .010 

SQUARE FILAMENTS - ALTERNATE THIN WALLS 

FIGURE 1 2  

SAME AS FIGURE 1 2  - VACUUM 

FIGURE 14 - SCALE = .010"  

THIN WALLED TUBE - THICK SHEET DIAMETER 

FIGURE 15 

FIBER FROM CROSS I N  TUBE 

FIGURE 16 



t - SCALE = .010" - SCALE = .OLO" 

WELL PACKED HOLLOW HEX FILAMENTS 

FIGURE 17 

VACUUM COLLAPSED HEX FIBERS 

FIGURE 18 

- SCALE = .010"  

SIX PIECE HEX PREFORM AND FIBERS 

FIGURE 19 - SCALE = .010" 

- SCALE = .010" 

HOLLOW FIBERS - WALL = 1 MICRON 

FIGURE 20 - SCALE = .010"  

COMPLEX EQUIDIMENSIONAL FILAMENT 

FIGURE 21 

VARZATION O F  FIGURE 2 1  

FIGURE 22 
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- SCALE = .010" 

. - SCALE = .010" 

NEAR-ELLIPTICAL HOLLOW FILAMENTS 

FIGURE 23 

RECTANGULAR FILAMENTS - TWO BRIDGES 

FIGURE 24 

SCALE = . 010" 

RECTANGULAR FILAMENTS - THREE BRIDGES 

FIGURE 25 - SCALE = .010" - SCALE = .0025" 

_ _ _ ~  
HOLLOW ELLIPSE WITH HONEYCOMB WALL 

FIGURE 36 
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HOLLOW ELLIPSE - SOLID MAJOR AXIS 

FIGURE 37 



* - SCALE = .010" 

ELLIPSES FROM DIAMONDS 

FIGURE 26 - SCALE = .010" 

HOLLOW ELLIPTICAL FIBERS 5: 1 

FIGURE 28 

HOLLOW ELLIPTICAL FIBERS 

FIGURE 27 - SCALE = .010" 

- SCALE = . 010" 

SOLID ELLIPTICAL FILAMENTS 

FIGURE 29 

FLAT OVALS FROM RECTAKGLES 

FIGURE 30 
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- SCALE = .010" 

. - SCALE = ,010" 

SOLID ELLIPTICAL FIBER5 

FIGURE 31 - SCALE = . 0025" 

SIX TUBE FIBERS - NOTE CENTER HEX 

FIGURE 32 - SCALE = .010"  

- SCALE = .010" 

nouow ELLIPSES WITH HOLLOW WALL5 

FIGURE 34 
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I I O L L O W  E L L I P ~ E L  E K O M  i u R t s  

FIGURE 35 



- SCALE = .010!' 

HOLLOW SQUARE FIBERS - SEGMENTED WALLS 

FIGURE 38 

SAME FILAMENT ENLARGED 

FIGURE 40 

HONEYCOMB TAPE 

FIGURE 42 

SCALE = . n i n  ' I  

SQUARE HONEYCOMB FILAMENT 

FIGURE 39 - SCALE = .010" 

HEXAGONAL HONEYCOMB FILAMENT 

FIGURE 41 

-1 SCALE = .010"  

HONEYCOMB FROM ROUND TUBES 

FIGURE 43 
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- SCALE = . 0 1 0 "  - SCALE = .010"  

CORRUGATED TAPE 

FIGURE 44 - SCALE = ,010"  

NESTED CORRUGATED TAPE 

FIGURE 45 - SCALE = .010"  

CORRUGATED TAPE 

FIGURE 46 

CORRUGATED TAPE FROM ROUND RODS 

FIGURE 47 - SCALE = .010"  
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"NASA" IN A FILAMENT 

FIGURE 48 



- SCALE = .010" - SCALE = .010"  

CORRUGATED ?'APE 

FIGURE 44 

SCALE = .010" 

NESTED CORRUGATED TAPE 

FIGURE 45 - SCALE = .010" 

CORRUGATED T>lFE 

FIGURE 46 

CORRUGA'TED TAPE FROM ROUND RODS 

FIGURE 47 - SCALE = .010"  

42 

"9AS.4' I N  A F ILAMENI  

FIGURE 48 



- SCALE = .010"  - SCALE = .010" 

CORKUGATED T A P E  FROM P L A T E  AND TUBES 

FIGURE 54 - SCALE = ,010"  

SIMPLER VERSION O F  FIGURE 54 

FIGURE 55 - SCALE = .010"  

T A P E  FROM T U B E S  

FIGURE 56 - SCALE = .010" 

CORRUGATED MICROTAPE FROM TUBES 

FIGURE 57 

SCALE = .010" - 

COLLAPSED RECTANGULAR HONEYCOMB 

FIGURE 58 
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RECTANGULAR HONEYCOMB WITH BRIDGES 

FIGURE 59 



- SCALE = .010" 

TUBULAR ARRAY CORRUGATED TAPE 

FIGURE 60 

I 

I - SCALE = .010" 

- SCALE = .010" 

VARIATION O F  FIGURE 60 

FIGURE 61 - SCALE = .010" 

HOLLOW TAPE - PLATES OUTSIDE TUBES 

FIGURE 63 
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- SCALE = .010" 

C -SHAPED FILAMENTS 

FIGURE 64 - SCALE = .010" - 

X-SHAPED FILAMENTS 

FIGURE 65 

SCALE = .010" 

I-SHAPED FILAMENTS 

FIGURE 66 - SCALE = .010"  

IMPERFECTLY PLACED MICROTAPE 

FIGURE 67 

I 46 

WELL PLACED MICROTAPE 

FIGURE 68 



IV. DISCUSSION 

Several  general  principles govern the forming operation, whatever 

s ize  o r  shape fi lament i s  being produced. 

being drawn, the c r o s s  section i s  reduced about one hundredfold while the 

attenuation speed i s  about 10, 000 t imes the feed speed. 

happens during the drawing operation, the f i rs t  reaction is  to look a t  the hor -  

izontal flow of g lass  f rom the preform to the filament. Similar i t ies  of shape 

make this s e e m  logical and the c r o s s  sections of the preform and the filament 

a r e  readily available for  examination and comparison. 

portant to consider that the ma jo r  flow of mater ia l  during attenuation was  at 

right angles to the c r o s s  section being examined. This  longitudinal o r  v e r -  

t ical  flow can be the ruling factor  in the resultant shape of the filament. 

A s  a hoiiow, shaped fiber i s  

In  studying what 

However, i t  is im- 

Glass  i s  a mater ia l  whose viscosity i s  extremely high even at forming 

tempera tures .  Common processes ,  such as blowing a bottle, fabricate 

g lasses  at 1, 000 to 10, 000 poises.  In the preform attenuation process ,  the 

g lass  probably does not reach a viscosity much lower than 100, 000 poises.  

At that point the viscosity changes abcut 170 Fer  degree fahrenheit. a property 

which necess i ta tes  good temperature  control in the fiber forming process .  

At lower tempera tures ,  the ra te  of increase  of viscosity with lower-  

ing tempera ture  i s  much grea te r .  The viscosity a t  1, OOOOF would be about 
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1013 poises. 

surface tension changes little. 

on the analysis of the behavior of shaped fi laments during forming. 

also emphasize how accurately one m u s t  control and coordinate furnace t em-  

pe r  atu r e,  v e r ti c a1 tempe r a tur e gradient, ho r izontal tempe r atu r e uniformity , 

ra te  of feed and ra te  of f iber  take-up. 

While the viscosity changes prominently with temperature ,  the 

These considerations all  have their  bearing 

They 

When the actual heating rate  of the g lass  in the attenuating preform 

i s  considered, it  becomes evident that two other factors  effect the t empera -  

tu re  gradient curve within the glass  i tself .  

attenuating, the glass  i s  moving downward a t  an ever  increasing rate  of speed. 

Thus although the temperature  in the furnace is  increasing, 

glass  to be heated i s  rapidly decreasing. 

though smaller factor i s  the fact that the mass of ma te r i a l  to be heated i s  de-  

creasing as attenuation proceeds.  

F i r s t ,  because the preform i s  

the t ime for  the 

The other  somewhat compensating 

The hexagonal tube drawing descr ibed e a r l i e r  a lso i s  done at unusually 

high viscosity. 

forming of hex tubes with flat  s ides  and c r i s p  corner  detail.  

of the glass causes  the side walls of the tube to collapse onto the graphite 

plug during draw down. 

too low. 

between the g lass  and the graphite plug i s  lost .  

Temperature  control is  again an important function in  the 

The viscosity 

Too high a tempera ture  pe rmi t s  the viscosity to drop 

Then size and shape both deter iorate  because intimate contact 
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Although no strength studies of the shaped f ibers  have been made to 

date, i t  is  well-known that a glass  filament exhibits higher tensile strength 

than does a glass  rod of the same glass  formulation. 

smal le r  in diameter ,  

i s  reached. 

strength a s  an untreated 0. 125" dia. rod of 10, 000 - 20, 000 psi .  

a fi lament 0. 0004" dia. i nc reases  the strength to 60, 000 - 90, 000 psi. 

and filament strengths can be fur ther  improved by acid polishing the surface 

with a mixture  of hydrofluoric and minera l  acids. It is  reasonable to postulate 

then- that a thin glass  film with a sur face  a rea  to volume relationship approach- 

ing that of a filament 0. 0004" thick would have a strength of the same o rde r  of 

magnitude a s  the filament. 

As the filament becomes 

the strength continues to rise until a plane of strength 

F o r  example, a soda-lime glass formulation may have a tensile 

Drawing to 

Initial 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Con clu sion s 

During the course of this f i r s t  

thqt a large number of different c r o s s  

phase of the program, i t  was  shown 

sectional shaped glass  fi laments could 

be drawn. This required learning how to control the complex p rocess  while 

dealing with extensive elongation, about 10, 000 t imes,  and substantial c r o s s  

section reduction, 

varying high viscosity,  regulation of temperature ,  p reform internal  p re s su re ,  

feed rate,  and take-up rate .  

i s  found in Table I,  page 27. 

micrographs which show the variety of shapes that may be formed. ) 

approximately 100 t imes;  in the face of surface tension, 

(A summary  of the resu l t s  of shaped fiber forming 

This table s e r v e s  a s  a guide to the many photo- 

A degree of skill has  been reached where,  given a specific complex 

filament c r o s s  section, a preform can be designed to yield that f i lament 

although they may not be identical to one another.  

A satisfactory method was developed for drawing long, straight,  

thin -walled hexagonal tubes . 

The precision winding technique was  improved to the state where flat 

tape -like fi laments can be wound into closely packed s t ruc tures .  

It was found difficult to draw f i laments  f r o m  l a rge  preforms;  f o r  
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example, 4" x 411, even with inside heaters  to supplement the more  normal 

outside hea ters .  Complex preforms,  however, i f  kept small (about 1 -1/2" 

in  diameter)  can be drawn into fi laments.  

Re commendations 

Although there  is  st i l l  a grea t  deal of work to be done forming fi laments 

of various shapes, i t  s eems  important a t  this t ime to examine in detail the 

propert ies  of shaped fi laments and wound s t ructures  made f rom them. Of 

special  i n t e re s t  with shaped f ibers  should be the t r ansve r se  moduli of these 

s t ruc tures .  Not only is  there  controlled, oriented hollowness and stiffness 

but many of the shaped fi laments have peculiar interlocking surfaces  which 

should be capable of displaying stiffness not found in ordinary glass  fiber 

compo site s . 

A m o r e  exhaustive study should be made of the dynamics of forming 

these shaped fi laments.  

to the p re fo rm a r e  mos t  instructive.  

information would a s s i s t  in this study and facilitate designing furnaces  to 

work with cer ta in  preform shapes. 

Pre l iminary  tes ts  with a high temperature  grid fused 

More p rec i se  tempera ture  profile 

Other  problems worthy of attention include: the comparison of proper -  

t i es  of f i laments  made f r o m  cemented preforms with those f rom the same 

shape monolithic p re fo rms ,  the precision winding of other shapes than tape 
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such a s  equidimensional f iber and, eventually, a comparison of proper t ies  

ve r sus  composition. The preform attenuation process  is  radically different 

f rom organic f iber  forming f rom spinnerettes.  

organic fibers with unusual, useful propert ies  could be made by variations 

of this process.  

I t  seems plausible that 

The potentialities of shaped fi laments a r e  so broad they can only be 

partially realized at this t ime. Obviously the hollow, well-braced fi laments 

car1 contribute to building s t ruc tures  with a very high stiffness-to-weight 

ratio.  

composites. However, a study by engineers and scientists of different 

backgrounds of the variety of shapes possible should turn up new, yet unthought 

of, applications for each discipline. 

The fibers with interlocking surfaces  should make high shear  strength 
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APPENDIX I 

STUDY OF COMPONENT INTERACTION AND INITIATION 

AND CONTINUATION O F  FAILURE MECHANISM 

Introduction 

Many problems a r e  present  in  filament wound composites.  In o rde r  

to obtain a c i rcu lar  f i lament of highest strength, it has  been necessary  to draw 

the fi lament f rom a selected g lass  formulation (E, 

relatively small diameter  fi lament (0.  0005" o r  l e s s ) .  

handle these fi laments individually in textile operations because the strength 

of individual f i laments i s  so low. When two hundred o r  m o r e  of these fila- 

ments  a r e  simultaneously and continuously formed f rom the or i f ices  of a 

bushing as in the hot me l t  p rocess ,  it has  been impossible to wind them so 

that each fi lament is  under precisely the same tension. 

one twentieth the modulus m u s t  t r ans fe r  the s t r e s s  between the unequally 

s t ra ined  fi laments.  

of the individual f i laments.  When these filaments a r e  wet with resin,  ten- 

sioned and wound as a s t rand into place on a mandrel ,  the individual f i laments 

have slightly different lengths. 

tensile force applied to the s t rand and do not form an equally spaced geo- 

m e t r i c  pat tern within the matrix. A s  a result, s t r e s s  concentrations can 

occur  at specific submicroscopic regions of the matrix where a relatively 

for  example) down to a 

I t  i s  impossible to 

A bonding res in  with 

Another difficulty a l s o  a r i s e s  f rom the unequal tensioning 

Therefore ,  they do not r eac t  equally to the 
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high loading is  t ransfer red  between two f i laments  through a polymerized 

res in  layer of exceedingly small c r o s s  section, essentially a line. 

Discus sion 

A s t a r t  was made on this work during the final three months of this 

program in the hope that, in a continuation of the overal l  p rogram,  consid- 

erable  light could be shed on microscopic and submicroscopic s t r e s s  concen- 

t ra t ions in composite ma te r i a l s  in general ,  and on the g lass - res in  interaction 

i n  particular.  

There i s  l i t t le o r  no information in  the l i t e ra ture  regarding the sub- 

microscopic effects on either side of the g l a s s - r e s in  contact a r e a  resulting 

f rom a strong bond capable of t ransfer r ing  s t r e s s  between the two physically 

diss imilar  ma te r i a l s ,  

high (Young's) modulus mater ia l  in the o rde r  of 10, 000, 000 psi o r  grea te r  

while the polymerized res in  in contact with it has  a modulus of l e s s  than 

1, 000, 000 psi ,  usually in the range of 300, 000 to 600, 000 psi .  

ials must  maintain intimate contact when subjected to internal  s t r e s s e s  

(shrinkage, differences in thermal  expansion, f iber  spacing, etc.  ) o r  when 

subjected to externally applied loads. The maintenance of intimate contact 

i s  preserved by applying a g lass - res in  coupling agent to the glass  sur face  

either in forming the composite by addition to the r e s in  o r  by other  means.  

The resin r eac t s  chemically with the coupling agent and the coupling agent 

The g lass  o r  other ceramic  fi lament i s  a relatively 

These m a t e r -  
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presumably reac ts  with the hydroxyls on the g l a s s  surface to form s t r e s s -  

t ransfer r ing  bonds. 

The contact layer  (about one molecule thick of a polymerized resin) 

that i s  well bonded to a glass  surface must ,  in o rde r  to maintain contact with 

that surface,  physically reac t  to s t r e s s  in almost precisely the same manner 

as g lass  with which i t  i s  in intimate contact. In successive molecular  layers  

of res in ,  the rest raining effect of the glass  surface becomes l e s s ,  decreasing 

at a ra te  a t  l ea s t  as grea t  a s  the square of the distance f rom that surface.  

Depending upon the differential modulus, glass  to  res in  and the packing density 

and orientation of the fi laments,  the restraining effect of the g lass  may affect 

the physical p roper t ies  of the res in  f rom the glass  surface to an estimated 

minimum of 0. 2p to a maximum in the order  of lp f rom that surface.  

can only be estimated because measurements  have not been made of this 

phenomena. 

This 

F o r  convenience, the effect  of the glass on the res in  has  been called 

"The Res t ra ined  Resin Layer  Theory". 

g lass  on this res in  layer  a r e  m o r e  than simply those involved with t ransfer  

of s t r e s s .  F o r  example, thermosetting resins swell on absorbing moisture .  

Obviously, the res in  that is  res t ra ined by the g lass  surface cannot absorb 

water  to the degree that unrestrained resin absorbs water .  

res in  within one molecular layer  is  likely to absorb only a quantity of mois ture  

The effects of the res t ra in t  of the 

In fact, the 
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sufficient to f i l l  lattice holes having dimensions grea te r  than the water  

molecule s. 

Another effect of the glass  surface on the res in  in  this "restrained 

res in  layer" i s  to increase  the energy required to propagate a flaw in that 

resin. Some investigations have indicated that cured res ins  a r e  composed 

of micelles (little lumps of a higher modulus mater ia l  surrounded by a lower 

modulus, m o r e  friable mater ia l ) .  In a non-restrained resin,  the micel le  on 

either side of a growing flaw may move to allow the flaw to grow. However, 

i f  only one of these two micel les  i s  f r ee  to move, as would be the case  in a 

res in  in  the rest rained res in  layer ,  i t  i s  likely to take a magnitude o r  m o r e  

increase  in energy. 

As this work develops in a continuation program,  not only the presence  

and magnitude of a restrained resin layer  will be studied but the relationship 

between the effects of this layer  and the initiation and propagation of failure 

producing flaws. 

Experimental  W or  k 

One of the eas ies t  ways to prove that this res t ra ining layer  does exist  

i s  to measure the effect of an externally-applied compressive load on the 

capacity of a cured resin casting to absorb  water .  
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In o rde r  to apply the information obtained to composite s t ruc tures ,  the 

effect of internal  s t r e s s  and changes in the geometry of the ma t r ix  will need 

to be understood. Samples have been made and some a r e  now under test .  

The castings in  this init ial  work a r e  of two sizes: a relatively s t r e s s -  

f r ee  s ize ,  1/8" dia. 

In the l a rge r  s ize ,  two types were  made. 

has  16 holes,  0. 041" in diameter ,  spaced on 0. 01" centers .  The cylindrical 

shapes were  cas t  in Teflon tubing that was  snugly drawn inside a copper tube. 

The rectangular fo rms  were  cas t  inside hollow square tubing with inside dimen- 

s ions 1 /2" x 1/2".  Copper wires ,  0. 041" in diameter  were  pulled straight 

and paral le l  between two dimensional drilled end plates. All  sur faces  con- 

tacting r e s in  were  coated with parting agent. After the r e s in  had been cured,  

the copper w i r e s  were  s t re tched to re lease  them, cut close to one side of the 

mold and withdrawn. After the piece was removed f rom the mold, the ends 

were  machined to smooth paral le l  surfaces.  

by 1/4" long and a larger  size 1/2" x 1/2" x 1" long. 

One i s  without holes while the other  

Re s ins  of varying formulations,  shear strength and water  absorption 

were  chosen (Table 11). 

reproducible cure .  

The cure  cycle used was  sufficient to give a full,  

F igu re  69 shows in schematic form the method by which the samples  

were  loaded and subjected to water  immersion at room temperature .  
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Figure  70 shows a picture of the apparatus with 5 of the 6 stations under load. 

F igure  7 1  shows a rectangular solid casting under p r e s s u r e  with a s t r e a m  of 

water  flowing over i t .  

same condition. Three loading conditions were  t r i e d :  no load, 15 lb. load 

and 30 lb. load. Only the small  cylinders were  tes ted under all th ree  con- 

ditions. 

Figure 72  shows a small  cylindrical casting under the 

Resul ts  

Since only six samples  a r e  tested under load a t  one t ime and it takes  

five of the smal le r  samples  under tes t  to obtain a s ta t is t ical  weight difference, 

only one se t  of prel iminary values a r e  available (Table  HI). 

has  relatively low water  absorption proper t ies  and good shear  p rope r t i e s .  

(ASTM D-732 of 10, 000 psi) .  

a threshold external s t r e s s  is  exceeded, there  i s  a reduced amount of mois ture  

absorbed. As external s t r e s s  was applied, the resin immediately reacted 

(351 ps i  loading) by showing a marked  reduction (3370) in the water  it would 

absorb.  In a piece with "locked in" internal  s t r e s s e s ,  the equilibrium mois -  

tu re  content may be greatly reduced also.  

l a r g e r  specimens, the "locked in" s t r e s s e s  a r e  greatly reduced. The l a r g e r  

casting subdivided by the holes absorbed the same quantity of water  (0.  6770) 

as the smaller castings under a "no load" condition. However, in cont ras t  

to the over 3700 psi  needed to reduce the water  absorption of the small cyl-  

This  res in  system 

F r o m  this  meager  data, i t  appears  that when 

When holes  a r e  cas t  into the 
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inders ,  400 psi  produced a marked  reduction. 

around the hole a s  an annular layer  may provide the answer.  

The geometry of the resin 

Very prel iminary resul ts  of the 0300/MPDA sys tem indicate that it 

may  be too water-sensi t ive to study at this time. 

Pre l iminary  Conclusion - Fai lure  Mechanism Study 

Evidence gained to date with an epoxy res in  of low mois ture  absorption 

supports the thesis  that the amount of moisture a thermose t  polymer will 

absorb depends upon the degree i t  can swell. 

swelling will reduce the moisture  the polymer can absorb.  

internal  s t r e s s ,  external  loading and polymer shape. 

a r e  present  in a g lass - res in  composite. Since there  a r e  indications of a 

relationship between total s t r e s s  and wzter absorption in submicroscopic 

regions,  it m a y  be possible to u s e  radioactively tagged water  to t r ace  the 

variation in quantity of water  absorbed in  the res t ra ined  resin layer  and 

thereby m e a s u r e  the s t r e s s  variation in that layer .  

Any factor that  r e s t r i c t s  this 

Such fac tors  are: 

All of these elements 
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Moisture AbscarDtion s tudies  on Cast Resins 

Resin Formulations to be Studied 

1. 100 pts  Epori 828, 91 pts  methyl nadic anhydride, 0 . 6  p t s  N,  N benzyl 
dime thy1 amine 

2. 100 pts  Epon 828, 41 pts  methyl nadic anhydride, 0 . 6  pts  N ,  N benzyl 
dimethyl amine 

3. 100 pts  ERRA 0300, 28. 3 rn-phenylene &amine 

4. 100 p ts  P-43, 10 pts  s tyrene,  1% Az,Q2 
L. 

5. 100 p ts  IC-312 polyester,  1% F3z2U2 

Cure Cvcles Required 

Formulations 1 and 2 

Formulation 3 

Formulations 4 and 5 

30 min @ 150OF 
30 m4-n @ Z O O O F  

15 rrriri @ 2,SO"F 

some samples gradually brought to 350°F for  4 h r s .  

30 rnin @ 150°F 
30 min @ 200°F 
30 min @ 250°F 

180 rnin @ 300°F 

30  min @ 150°F 
30 min @ 200°F 

180 min @ 250°F 
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TABLE 111 

Castings: Water .Absorption Data 
---.---- 

100 pts  E-828/91 pts  MNA/O. 6 pts  BDMA Resin 
I -I llllll.-̂l 

Small castings - 1/4" lone x 1/8" d ia .  

5 days soak under 7300 ps i  
equilibrium soak under 7300 ps i  

5 days soak under 3650 psi  
equilibrium soak under 3650 psi 

5 days soakunder  no load 
equilibrium soak under no load 

N o  holes - 351 ps i  load 
(70 Compaction 0 .  19oJoo) 

4 days soak 
equilib riurn 

N o  Holes - No Load 
4 days soak 
e quili b r ium 

Holes - 402 ps i  load 
(70 Compaction 0 .  3370) 

4 days soak 
equili b rium 

Holes - No Load 
4 days soak 
e qui l ib  r ium 

% 
Inc r eas  e 

0. 17 
0.  25 

0. 56 
0 .67  

0. 56 
0.68 

0. 05 
0 .20 

0. 14 
0. 30 

0. 28 
0. 52 

0.32 
0.67 
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I c 

CABLE II 
P 

1 Ir WATER LOADING ARM I 
LEAD WEIGHTS 

SUPPLY 

E 

METHOD O F  LOADING AND SOAKING RESIN CASTINGS 

FIGURE 69 

VIEW O F  LOADING AND SOAKING APPARATUS 

FIGURE 70 

CLOSE-UP O F  LARGE CASTING 
UNDER LOAD AND WATER 

CLOSE - U P  O F  SMALL CASTING 
UNDER LOAD AND WATER 

FIGURE 72 FIGURE 71 
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APPENDIX I1 ----- 

HISTORICAL NOTES - - 

The art  of drawing glass filaments w a s  pract iced by the ancient 

Egyptians in the New Kingdom t imes  dating f rom about 1600 B. C. (5). 

f i laments which had i r r egu la r  diameters  in the o rde r  of twenty t imes our  

present  day glass  filaments were  drawn from rods of glass  reheated on one 

end and attenuated. 

crude sil ica-alkali  glass between metal  rods until the lump had elongated to 

a cylinder with the thickness of a pencil. 

rods in gay colors  were  wound In sp i ra l s  around the walls o r  were  embedded 

in  the meta l  of vases .  

heated end of a rod was highly refined as  an operation by the Venetian bead 

manufacturers  in the 16th t s  18th cecturies although the intention to use  g lass  

fi laments in texti les was  not evident. 

These 

The rods were  made by turning a hot ductile lump of 

Class fi laments drawn f rom these 

The technique ai' forming g l a s s  f i laments f rom the 

The method developed has  been described as follows (6): "The 'Glass  

Spinning Apparatus '  consisted of a car row r immed ree l  (wheel) about one 

m e t r e  (40 in.  ) in  diameter  and kept turning at approximately 650 RPM by a 

crank driven rope belt - onto which the glass fi lament was wound a s  i t  was  

drawn f rom a rod of glass  kept moving steadily into a j e t  of flame. After a 
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t ime, the skein on the ree l  was cut through at one point to make many fila- 

ments  each about 3 m e t r e s  long. " 

The rod drawing process  i s  st i l l  a commercial  operation today but 

Alkali glass  i s  used i s  confined to companies in  West and E a s t  Germany. 

and diversified products such as thermal  insulation and chopped s t rand 

reinforcing m a t s  a s  well as spun yarns  and continuous rovings a r e  made. 

The glass fiber f rom the commercial  rod drawing p rocess  has  only two-thirds 

the strength of the filament made f rom a bushing. 

filament forming shows modest  improvement over  the ancient process .  

number of rods (125 o r  more )  about 4 mil l imet res  in  diameter  a r e  mounted 

in  a "spinning f r ame t t  and kept slowly moving vertically downwards into 

individual g a s  f lames.  

filaments after them. Via  an inclined plane, these a r e  led to a rapidly r e -  

volving cylinder on which they a r e  wound next to but independent of one 

another. 

The technique used  fo r  

A 

At first, drops of g l a s s  fall downward drawing glass 

Some f i rms  use  an electrically heated chamber .  
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APPENDIX 111 

ORGANIC FILAMENTS 

A brief feasibility study was undertaken during the final s tages  of the 

program to determine i f  organic (plastic) filaments could be formed by the 

preform attenuation technique. 

The plast ics  experts  felt that the most  promising candidate would be 

the rather  amorphous polystyrene. Fi laments  down to about 0.0005" diameter  

were  drawn readily f rom an 1/8" diameter  polystyrene rod. 

tempera tures  and drawing speeds could be used to form filament. 

temperature  would cause a failure a t  the point of draw down while severa l  

hundred degrees  higher would produce brittle o r  weak fi laments with low 

elongation -to - b r e  ak. 

A wide range of 

Too low a 

I 

Polypropylene rod produced f ibe r s  over a somewhat l imited tempera-  

t u r e  range. The f ibe r s  demonstrated high elongation (100 - 20070) at which 

t ime they inc reased  in tensile stiffness just  before failure.  

Polycarbonate was  m o r e  difficult to handle with bad foaming a t  the 

forming "onion" until careful  drying of the preform for 24 hours  p r io r  to 

drawing the fi lament was  done. Qualitative resu l t s  indicate low tenacity. 
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A number of other organic compositions a r e  candidates for this type 

of forming. 

to determine optimum drawing conditions. 

simple tape of polystyrene, 

technique. 

All the likely mater ia l s  need to be investigated m o r e  thoroughly 

On the basis  of having drawn 
I 

shaped organic fi laments can be formed by this 

In summary then, plastic fi laments could be drawn from polystyrene, 

polypropylene and polycarbonate. 

flat filaments. 

f ibers  drawn by the m o r e  usual  spinnerette synthetic f iber  forming technique. 

Polystyrene was drawn into both round and 

Tensile strengths of the fi laments were  about equivalent to 
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